
1

Abstract— This article describes the development and
implementation of a secure Instant Messenger service using the
pre-existing Microsoft Networks Instant Messenger program.
Our solution involves creating a software plug-in for Trillian Pro
which intercepts and encrypts messages before they are sent, and
then allows the receiver to decrypt and view the original message.
Also included in this article is an analysis of pre-existing solutions
and an explanation of how our plug-in improves upon them.

Index Terms—Eavesdropping, IM, plug-in, RSA, Trillian Pro.

I. INTRODUCTION
NSTANT MESSENGERS (IMs) are gaining increasing

popularity among regular Internet users as a cheap and
effective form of communication. Unlike the telephone, IMs
provide free long distance conversations and usually some sort
of file transfer service; and unlike email, IM conversations
occur in real-time. The drawback to IM services is that they
are less secure than telephone, and often less secure than email
as well. However, since IM services are free and IM
conversations are usually undertaken casually, many users do
not consider the security risks inherent in these systems. The
users, called clients, may exchange such confidential
information as passwords or bank account numbers in a way
that could compromise their private information.

 One prominent form of vulnerability in IM services is
eavesdropping. Eavesdropping occurs when an uninvited third
party reads the messages sent between communicating clients.
The chances of eavesdropping increase when one or both of
the following conditions are true:

• The messages have to go through a number of

intermediaries,
• The messages are sent in clear text

Whether intermediaries are used to relay the IM from the

sender to the recipient depends on design of the IM system.
There are essentially two types of IM system designs: Client-
Server type and Peer-to-Peer (P2P) type. The following

W. D. Author, is with the Department of Computer Engineering pursuing his
master degree at the University of British Columbia.
W. L. Author, is with the Department of Computer Engineering pursuing his
master degree at the University of British Columbia.
M. T. Author, is with the Department of Engineering Physic pursuing her
undergraduate degree at the University of British Columbia.

figures illustrate the difference:

Server

Client A Client B

msg,
control

msg,
control

Figure 1: Client-Server Instant Messenger

Server

Client A Client B

msg

control control

Figure 2: Peer-to-peer Instant Messenger

With a Client Server IM system, clients do not sent
messages directly to each other; all message traffic is
facilitated by the server. With a P2P IM system, by contrast,
clients send messages to each other directly. Although it is not
necessarily the case, a server system may be used for
authentication, for presence services1, and for control in both
types of IM.

1 Most IM services have some method of showing clients whether or not

their particular contacts are also connected to the service at any given time.
This is what is meant by "presence services."

Development and Implementation of a Secure
Instant Messenger for Public Use (November 2004)

Wesam Darwish, Wing Leung, and Megan Tiedje, EECE 412 Students

I

2

The majority of the IM systems available are Client-Server
based. This design centralizes authentication, authorization,
and control services, making implementation easier. However,
the Client-Server design has implications in terms of security;
it could increase the number of hubs a message needs to travel
through from originator to recipient, which increases the
number of intermediaries the message passes through, thus
increasing the chance of successful eavesdropping. With a P2P
IM system, the number of hubs that a message needs to travel
could decrease. For example, messages between two clients
within the same domain (intranet) using a P2P IM need not
travel outside of the domain. As well, eliminating the server as
a route for messages eliminates the chance of secret messages
being intercepted and recorded at a centralized location.

Vulnerability to eavesdropping would be substantially
reduced, however, if the messages are encrypted.
Eavesdropping is a problem caused by messages being
"overheard", but through encryption the confidentiality of
messages can be maintained regardless of whether the message
is read by an uninvited party or not.

 For that reason, our solution involves adding an
encrypting component to pre-existing IM systems. The pre-
existing factor is an important point, which touches on the
design principles of psychological acceptability and ease-of-
use. Since the intent of this project is to create a device that
can be generally used, it is of significant benefit to base that
device on a proven, popular IM system. Most users are
comfortable with certain known IM systems, and might be less
inclined to use a secure form of IM if it required first signing
up for a new IM service, and then convincing all their friends
and relatives to do the same. That is one of the ways in which
our implementation improves upon some of the existing
solutions.

 In order to add message encryption to a pre-existing IM
system, we implemented a software plug-in for Trillian Pro.
Trillian is a program which incorporates a number of the most
popular IM systems into a single unified user interface.
Utilizing this program for our device had two basic benefits.
First of all, Trillian Pro allows the creation and use of plug-ins
for its system, offering the necessary interface between a user-
written program and the IM services. In addition, since Trillian
already accommodates a variety of popular systems, a plug-in
designed for one particular system is readily extensible to
other systems. Therefore, although our project focuses on
implementing secure messaging for one particular service,
Microsoft Networks Instant Messenger (MSN IM), we could
extend the plug-in for other services.

II. RELATED WORKS

A. Review Stage
The following is a list of IM systems that have encryption

support:

Both AOL IM and ICQ use the Blowfish Encryption
algorithm, a symmetric 64-bit block cipher block which uses a
variable length key. Attempts have been made to crack this
cipher using differential analysis but they have not been
successful.

Gaim implements public/private key encryption for both
messages and file transfer. Upon starting a communication,
communicating parties create a public/private key pair. Then,
public keys are exchanged to implement a secured channel.
This key exchange scheme is simple. However, it is weak
against Man-In-The-Middle and spoofing attacks because the
keys themselves are not certified. For more information, see
http://gaim-encryption.sourceforge.net/.

In general, it should be noted that custom algorithms should
be avoided in secure software design, particularly proprietary
algorithms which are not available for analysis.

III. SOLUTION
The three main factors for security are confidentiality,

integrity, and availability. In this case, we assumed that
availability would be within the purview of the IM system
itself. Our main emphasis is on confidentiality, with some
integrity functionality. Encryption is the mechanism by which
confidentiality is achieved, using the Rivest, Shamir and
Adleman (RSA) Public-Key Cryptography Standard (PKCS).
In addition, a measure of integrity assurance is provided by our
plug-in. The plug-in will respond with an error message when
clear text is received or when the encrypted string fails to
decrypt, which may indicate a modified message in either case.

The plug-in that we implemented is based on a threat model
that assumes the IM service is used by the general public for
private applications. In other words, the assumption is that
public IM services are geared towards providing casual
communication between friends, relatives, and co-workers. IM
services are not intended for use in political, industrial, or
financial applications, which is a reasonable assumption as IM
services are provided free-of-charge, without client screening,
and usually on an "as is" basis. Corporations and other large
organizations would be expected to implement their own
communication protocols for official transactions. Based on
this assessment, we expect that the common threats would be
due to:

3

• Credit card and/or bank account fraud
• Identity theft
• Any form of mischief

Our solution would not be expected to stand up to a security

professional with dedicated server farms, for example, but
should be expected to thwart an individual on a home
computer.

A. General Architecture

The SecureIM plugin is compiled as a separate component
as a Dynamic Link Library (DLL) file as required by the
Trillian Pro Software Development Kit (SDK). (ref:
http://www.trillian.cc/support/sdkmanual.php). The user
manually loads and unloads the plugin.

The Crypto++ library used for this project is also compiled
as a separate DLL. This decision was made (as opposed to
linking everything with the SecureIM plugin) in order to
reduce the size and the memory footprint of the plugin DLL.
Furthermore, this approach allows for only the required crypto
functionality to be included in the DLL.

Crypto++ was used because it is a commonly used library in
commercial and non-commercial products. (ref:
http://www.mobiuslinks.com/links.asp?sid=1)

The SecureIM plugin uses the Microsoft Foundation Classes
(MFC) for the user interface. This decision was made to
minimize the development time. Other Graphical User
Interface (GUI) libraries are also available, but require more
effort in order to integrate them with the plugin.

B. SecureIM Plugin Architecture

First, a sent or received message is abstracted by the
ChatMessage class, and the SecureIM plugin uses this class
internally to pass information about the actual Trillion chat
messages.

The RSACrypto class abstracts the calls into the Crypto++
library, using the RSA PKCS standard as typedefed in the
Crypto++ headers (RSAES_PKCS1v15). Each user is
expected to have a public key already distributed to their

contacts, as well as a private key. The public key is employed
by a user to encrypt a message before sending it to a second
user. Upon receipt, the recipient's plug-in decrypts the message
with the recipient's private key, or reports an error if the action
is unsuccessful (see below for more details.)

Next, the CMainFrame class implements the SecureIM
plugin GUI. This user interface displays a log window with
decrypted chat messages. If the user receives a message from
another party who is not using the SecureIM plug-in, or who is
using the wrong public key, the log window will display a
message identifying a lack of confidentiality in the received
message. This GUI displays only decrypted messages; when
messages are sent in clear text format the GUI displays only
the error message. This feature fulfills the design principle
which suggests the state of a system should be made
transparent to the user.

CSecureIMPluginApp is the main class, which drives the
actions performed by the plug-in, and provides entry points
into the SecureIM plugin as required by the Trillian SDK (ref:
http://www.trillian.cc/support/sdkmanual.php). This class also
registers the following callback methods with Trillian’s plug-in
interface:

• SendMessageCB(): this method is called whenever the

user attempts to send a message through the Trillian
interface. At this point, the SecureIM plugin intercepts the
message, uses the RSACrypto class to encrypt it, returns
the encrypted form to Trillian for transmission, and sends
the clear text version to the CMainFrame class for display.

• BroadcastCB(): this method is called whenever a message

is received. Trillian sends a copy of the received message
to the SecureIM plugin, which in turn attempts to decrypt
it. If the message was sent in clear text format, or if it was
encrypted using the wrong public key, the SecureIM
plugin fails to decrypt and logs an error message as
indicated in the CMainFrame class description above. The
sequence diagram for this method is the complement of

4

SendMessageCB’s.
• FileTransferCB(): this method is called to handle

encryption/decryption of files in a manner similar to that
used for message text.

IV. DISCUSSION

A. Assets
We consider this to be an effective improvement to the IM

system for the following reasons:

• Encryption defends against eavesdropping. As long as the
RSA encryption algorithm is not broken and the keys are
not compromised, the encrypted messages remain
confidential. This will prevent eavesdropping attempts by
an adversary who happens to intercept the message, since
it is mathematically infeasible to calculate the private key
from the public key and hence the message cannot be
decrypted.

• The RSA encryption framework provides some defenses
against spoofing. For example, if an adversary manages to
gain access to another user's account and attempts to have
an encrypted conversation with another user, that recipient
will recognize that he or she is communicating with the
wrong individual when the expected public key fails to
decrypt the communication. This benefit is caused by the
fact that the set of keys used for communication are not
automatically linked to that account. (See the PGP keys
section under Liabilities.)

• Our solution maintains the benefits of all the services
provided by the IM server: authentication and control
services. It is, therefore, a cost-effective solution from the
perspective of hardware infrastructure and service reuse.

• We use RSA implementation from Crypto++, an open-
source crypto-library. As such, the development time is
minimal. All effort required goes into integration of
components. Our solution is, therefore, a cost-effective
solution from the perspective of software development.

• Since Trillian Pro supports multiple IM services, our
encryption plug-in can be easily expanded to cover a
range of systems.

B. Liabilities

Our plug-in does not address the following issues regarding

IM security:

• Authentication vulnerabilities still exist. An adversary

would still be able to gain access to an account if he or she
managed to authenticate successfully through exercises of
social engineering.

• Our solution uses the PGP services for public key
exchange. We assume that key management is provided

by other services and that the users know which public
key to trust. This assumption may or may not hold.
However, key exchange issues are not within the scope of
our project.

• Our solution would probably not guard against other
possible vulnerabilities introduced by Trillian Pro itself.

REFERENCES
[1] Scott Van Camp, “OMG! Instant Messaging Is Becoming an Ad

Vehicle” Brandweek, Iss. 39. vol. 45. New York, 2004, Nov 1, 2004,
pp. 14. 1pgs

[2] Mike Heck, “Making Safe for the Enterprise” InfoWorld, Iss. 34. vol.
26. San Mateo, Aug 2004, pp. 49. 5pgs

[3] Gregg Keizer, “Public IM Threatens Entrerprise Security” Asia
Computer Weekly, Singapore, Jul 5, 2004, pg.1

[4] Melanie Turek, “Practice safe chat” Network World, vol. 21, Iss 31;
Framingham, Aug 2, 2004, pg.34, 2 pgs

[5] Drew Robb, “Instant Messaging” vol. 119, Iss 2; Pittsfield, pg.24, 1
pgs

[6] Juan Carlo Perez, Todd R Weiss. “Microsoft to Link Enterprise Instant
Messaging Server With Rival Networks” Computerworld, vol. 38, Iss
29; Framingham, Jul 19, 2004, pg.10

	I. INTRODUCTION
	Figure 1: Client-Server Instant Messenger
	Figure 2: Peer-to-peer Instant Messenger

	II. Related Works
	A. Review Stage

	III. Solution
	A. General Architecture
	B. SecureIM Plugin Architecture

	IV. Discussion
	A. Assets
	B. Liabilities

